By Jim Fitch
Machinery Lubrication Magazine

When working from a single sample, it is common for labs to classify wear particles according to standardized shapes such as platelets, chunks, ribbons and spheres. The task of deriving meaning from the number and size of particles in the different classifications is much more difficult. Condition monitoring is not about science – it’s about understanding and reporting what is happening, why it’s happening, where it’s happening, and how severe or threatening the condition might be. This can be a daunting task, to say the least, especially if you are not being assisted by a particle-counting technology.
The lubricant co-exists with the machine and has an active presence in its critical frictional zones. As such, the progression of wear-related machine failures does not go unnoticed by the lubricant. The byproducts of wear and surface damage become suspended in the lubricant, embedded in the filter, or stratified as sediment in nooks and crannies.
As failure advances, most wear modes produce more particles, and some also produce larger particles. In certain cases, what was thought to be an advanced failure state may suddenly appear benign or in decline. There are reasons for this, so do not be fooled. The wounds and excavations from wear do not heal over on their own.
The time has come to increase the specificity of wear particle characterization. The four basic shapes were a good start, but there is much more we can learn and apply. For those who understand vibration, imagine being limited to vibration overalls or only what is produced in the low-frequency velocity spectrum. Likewise, thermal imaging has shown us how to look far beyond discrete temperature values or trends. This analogy applies to wear debris analysis as well. The appearance of particles holds many clues that generally go unnoticed or are just not understood.